Tag Archive for: Data

Analyzing the Olympic 100-meter sprints

As always, the whole world was focused on athletics this summer at the Tokyo Olympics took place. Within the athletics program, the men’s and women’s 100 meters were the in the spotlight. Behind the historic performances is a treasure trove of data that helps look in more detail at the event, learn about it, and identify the latest trends in sprinting. Below are some insights on overall performance levels, how well maximum velocity and acceleration correlate, top speed, speed loss, race modeling, and more.

Read more

What makes the difference in a championship?

This weekend’s European Indoor Championships marks the return of championships to track and field. After nearly 18 months without a major championship, both athletes and fans will get a reminder about what championships are all about. Performing well at a major championship is the main goal of any elite athlete, because, when they look back at their career, it is the medals that they will count the most. Asafa Powell may have run under 10 seconds nearly 100 times, but he’s remember just as much for the fact he never won a major title. Optimizing performance on the day of competition is therefore of critical importance, and a lot of time is spent—or at least should be spent—developing strategies to support competition day performance.

Embed from Getty Images

What makes championships different?

Recognizing the importance of being able to perform on the day, coaches spend a lot of time developing training programs to support peaking, with a variety of different planning and periodization strategies in use. But the physiological side is just one factor that comes into play at championships.

In some events, primarily the middle- and long-distance events, performance at a championship may come down to tactical as opposed to physical differences, with elite athletes potentially putting themselves in better positions during the race, as opposed to focusing just on out-running their opponents. In addition to this, pacemakers are often used in Grand Prix meets, and are obviously not present at major Championships, which again may influence performance. Furthermore, performance management across multiple rounds of competition is also important at major championships and not a challenge the athlete often has to consider at Grand Prix meetings.

For example, when I competed at the 2007 World Championships, I had a 100m heat on the morning of day 1, quarter-final in the evening of day 1, and then semi-final and (had I qualified) final in the evening of day 2. In comparison, the majority of competitions on the athletics circuit are either one-off races, or a semi-final and final in quick succession. Being able to manage energy and performance across two days is, therefore, an additional issue for athletes looking to win medals at major championships.

Understanding competition dynamics

Being able to better understand the dynamics of competition day performance is, therefore, likely to be of considerable interest—and, fortunately for us, was the subject of a recent paper published in the European Journal of Human Movement. Here, the authors compared the seasons best performances of top-8 finishers at the World Championships and Olympic Games from 1999-2019 inclusive in sprint (100m & 400m), middle-distance (800m & 1500m) and long-distance (5000m) events to their Championships performance. Overall, 2472 male and 2463 female performances were analyzed, making this a very rich dataset.

The results make for interesting reading, and I’d encourage you to read the whole paper yourself as it’s open access. As a summary, for male medalists, there were no differences between pre-Championships SB and major championships performance in the 100m (e.g. average SB = 9.90 and average final performance = 9.89) and 800m events; in the 400m, the athletes were generally faster at the Championships (e.g. 44.4 as an average SB, compared to 44.24 average final performance); and, in the 1500m and 5000m (e.g. 13:00.89 as average SB, 13:20.31 as average finals performance), the athletes were typically slower at the Championships relative to their SB. For female medalists, there was no difference between SB and championship performance in the 100m (10.91 SB vs 10.90 finals); in the 400m (49.99 vs 49.61) and 800m performances were generally faster than SB; in the 1500m and 5000m (14:35.12 vs 14:50.01), performances were generally slower than the athlete’s SB.

For non-medal winning finalists, times in the Championships final were, on average, slower than their SBs. For example, in the men’s 100m, non-medal winning finalists had an average SB of 9.99 compared to an average finals performance of 10.10; in the women’s, this was 10.97 (SB) compared to 11.06 (finals).

Making sense of the numbers

What does all this mean? To me, it indicates that, in the sprints, medalists are better at performing at or close to their SBs than non-medalists. The causes of this might be varied; medalists might be better able to handle the stress and pressure of competition, for example, or have more experienced coaches who are better able to develop a taper and peaking process to optimize their Championship performance. They might also be able to better manage their energy across heats, semi-finals, and finals; this could be matched to ability, as, in both men’s and women’s 400m events, non-medal winners had to run closer to their SBs in the semi-finals that medal winners did, which may have a knock-on effect to finals performance.

In distance events, however, this is not the case; athletes were generally slower than their SBs, with the same relative differences between medalists and non-medal winners. This suggests that race tactics are of huge importance in the distance events at major Championships, with season’s bests having smaller than expected relevance to performance.

Preparing for championships

From the data presented in this paper, there are some potential interpretations that we can make to inform how we might prepare athletes for major Championship performance:

  1. For sprinters, maintaining performance levels at SB level is crucial for success; adequate training planning and periodization to deliver this is therefore a crucial performance strategy.
  2. Similarly, optimizing energy distribution across the rounds is an important aspect of success. One way to do this is to improve the performance level of the athlete (i.e. it’s easier to run 9.99 in a semi-final if your SB is 9.80 than if it’s 9.98), but, from a practical standpoint, training programs that develop this capacity are crucial, as are “on the day” interventions such as recovery, nutrition, sleep, etc.
  3. In endurance events, tactical ability appears to a crucial underpinning construct of success; as a result, coaches and athletes should look to develop this through training and competition, as opposed to merely focusing on developing physiological characteristics.

Whilst much (maybe even all) of the above seems obvious, the performance trends presented in this paper suggest that not everyone gets them right, so, hopefully, this data serves as a timely reminder!

Understanding and measuring load in sport

In the previous article, I wrote about a variety of different models that better help us explain and understand why injuries occur. As a quick refresher, we typically have a predisposed athlete, who finds themselves in a local environment that increases their susceptibility, and they then have an inciting event which causes the injury itself. Central to many of these models is the concept of stress or load placed on the athlete. This installment of the Performance Health series looks to help coaches understand external and internal load, and what that means to coaches. Read more